Replica Exchange with Hybrid Tempering Efficiently Samples PGLa Peptide Binding to Anionic Bilayer

J Chem Theory Comput. 2023 Sep 26;19(18):6532-6550. doi: 10.1021/acs.jctc.3c00787. Epub 2023 Sep 7.

Abstract

We evaluated the utility of a variant of the replica exchange method, a replica exchange with hybrid tempering (REHT), for all-atom explicit water biomolecular simulations and compared it with a more traditional replica exchange with the solute tempering (REST) algorithm. As a test system, we selected a 21-mer antimicrobial peptide PGLa binding to an anionic DMPC/DMPG lipid bilayer. Application of REHT revealed the following binding mechanism. Due to the strong hydrophobic moment, the bound PGLa adopts an extensive helical structure. The binding free energy landscape identifies two major bound states, a metastable surface bound state and a dominant inserted state. In both states, positively charged PGLa amino acids maintain electrostatic interactions with anionic phosphate groups by rotating the PGLa helix around its axis. PGLa binding causes an influx of anionic DMPG and an efflux of zwitterionic DMPC lipids from the peptide proximity. PGLa thins the bilayer and disorders the adjacent fatty acid tails. Deep invasion of water wires into the bilayer hydrophobic core is detected in the inserted peptide state. The analysis of charge density distributions indicated that peptide positive charges are nearly compensated for by lipid negative charges and water dipole ordering, whereas ions play no role in peptide binding. Thus, electrostatic interactions are the key energetic factor in binding cationic PGLa to an anionic DMPC/DMPG bilayer. Comparison of REHT and REST shows that due to exclusion of lipids from tempered partition, REST lags behind REHT in peptide equilibration, particularly, with respect to peptide insertion and helix acquisition. As a result, REST struggles to provide accurate details of PGLa binding, although it still qualitatively maps the bimodal binding mechanism. Importantly, REHT not only equilibrates PGLa in the bilayer faster than REST, but also with less computational effort. We conclude that REHT is a preferable choice for studying interfacial biomolecular systems.

MeSH terms

  • Algorithms*
  • Amino Acids
  • Biological Transport
  • Dimyristoylphosphatidylcholine*
  • Lipid Bilayers

Substances

  • Dimyristoylphosphatidylcholine
  • Amino Acids
  • Lipid Bilayers