Information theory-guided heuristic progressive multi-view coding

Neural Netw. 2023 Oct:167:415-432. doi: 10.1016/j.neunet.2023.08.027. Epub 2023 Aug 25.

Abstract

Multi-view representation learning aims to capture comprehensive information from multiple views of a shared context. Recent works intuitively apply contrastive learning to different views in a pairwise manner, which is still scalable: view-specific noise is not filtered in learning view-shared representations; the fake negative pairs, where the negative terms are actually within the same class as the positive, and the real negative pairs are coequally treated; evenly measuring the similarities between terms might interfere with optimization. Importantly, few works study the theoretical framework of generalized self-supervised multi-view learning, especially for more than two views. To this end, we rethink the existing multi-view learning paradigm from the perspective of information theory and then propose a novel information theoretical framework for generalized multi-view learning. Guided by it, we build a multi-view coding method with a three-tier progressive architecture, namely Information theory-guided heuristic Progressive Multi-view Coding (IPMC). In the distribution-tier, IPMC aligns the distribution between views to reduce view-specific noise. In the set-tier, IPMC constructs self-adjusted contrasting pools, which are adaptively modified by a view filter. Lastly, in the instance-tier, we adopt a designed unified loss to learn representations and reduce the gradient interference. Theoretically and empirically, we demonstrate the superiority of IPMC over state-of-the-art methods.

Keywords: Information theory; Multi-view; Representation learning; Self-supervised learning; Wasserstein distance.

MeSH terms

  • Heuristics*
  • Information Theory*
  • Learning