Tunable assembly of host-guest colloidal crystals

Soft Matter. 2023 Sep 20;19(36):7011-7019. doi: 10.1039/d3sm00891f.

Abstract

Entropy compartmentalization provides new self-assembly routes to colloidal host-guest (HG) structures. Leveraging host particle shape to drive the assembly of HG structures has only recently been proposed and demonstrated. However, the extent to which the guest particles can dictate the structure of the porous network of host particles has not been explored. In this work, by modifying only the guest shape, we show athermal, binary mixtures of star-shaped host particles and convex polygon-shaped guest particles assemble as many as five distinct crystal structures, including rotator and discrete rotator guest crystals, two homoporous host crystals, and one heteroporous host crystal. Edge-to-edge alignment of neighboring stars results in the formation of three distinct pore motifs, whose preferential formation is controlled by the size and shape of the guest particles. Finally, we confirm, via free volume calculations, that assembly is driven by entropy compartmentalization, where the hosts and guests contribute differently to the free energy of the system; free volume calculations also explain differences in assembly based on guest shape. These results provide guest design rules for assembling colloidal HG structures, especially on surfaces and interfaces.