Performance of a pilot-scale BDD reactor by numerical analysis of reaction rate parameters and additional numbers for mass transfers

Chemosphere. 2023 Nov:341:139988. doi: 10.1016/j.chemosphere.2023.139988. Epub 2023 Sep 3.

Abstract

The performance of a pilot-scale boron-doped diamond (BDD) reactor through a numerical analysis of reaction rate parameters and enhanced mass transfer has been investigated. The main objective of this research is to evaluate the efficiency of the reactor in mineralizing and degrading caffeine as an emerging contaminant. Based on the kinetic mechanisms and mass transport correlations reported in the literature, two reaction rate kinetic models for caffeine degradation are proposed and analyzed. The models consider different electrolytes (NaCl and Na2SO4) and applied current densities. The kinetic fitting process utilizes the gradient-maximal electrochemical approach, together with orthogonal placement methods, fourth-order Runge-Kutta (RK4) methods, and Nelder & Mead methods for optimization of kinetic parameters and spatial discretization of the material balance. Experimental data obtained from a factorial design with four factors and two levels (24) validate the proposed kinetic models. Caffeine degradation is achieved with NaCl and Na2SO4 electrolytes at concentrations of 60 ppm and 100 ppm, respectively. The corresponding applied loads are 1.5 AhL-1 and 3 AhL-1. Na2SO4 exhibits superior performance with a total organic carbon (TOC) removal efficiency of 99.13%, while NaCl achieves 31.47% mineralization. The behavior of caffeine degradation under the operational and scale conditions demonstrates that NaCl, as a support electrolyte, enables controlled charge transfer (current density) during the degradation process. In contrast, Na2SO4 as a support electrolyte introduces a mixed control of charge and mass transfer. The pilot-scale kinetic parameters obtained in this study provide valuable insights into the support electrolyte dynamics and current density dynamics in BDD-based Electrooxidation (EO) systems, particularly in complex matrix applications. Furthermore, the observed electrical consumption supports the potential application of EO as a viable technology for industrial-scale tertiary wastewater treatment, specifically for caffeine removal.

Keywords: Electrochemical reactor; Mathematical optimization; Reaction rate; TOC removal.

MeSH terms

  • Caffeine*
  • Electricity
  • Industry
  • Kinetics
  • Sodium Chloride*

Substances

  • Sodium Chloride
  • Caffeine