Unraveling the Aromatic Rule of Cyclic Superatomic Molecules in π-Conjugated Compounds

J Phys Chem A. 2023 Sep 14;127(36):7487-7495. doi: 10.1021/acs.jpca.3c03872. Epub 2023 Sep 5.

Abstract

The aromaticity of π-conjugated compounds has long been a confusing issue. Based on a recently emerged two-dimensional (2D) superatomic-molecule theory, a unified rule was built to decipher the aromaticity of cyclic superatomic molecules of π-conjugated compounds from the chemical bonding perspective. Herein, a series of planar [n]helicenes and [n]circulenes, composed of benzene, thiophene, or furfuran, are systemically studied and seen as superatomic molecules On-2F2 or On, where superatoms F and O denote π-conjugated units with 5 and 4 π electrons, respectively. The ascertained superatomic Lewis structures intuitively display aromaticity with each basic unit meeting the superatomic sextet rule of benzene, similar to classical valence bond theory, which is favored by the synthesized complex π-conjugated compounds comprising different numbers and kinds of subrings. The evolutionary trend of ring currents and chemical bonding suggests a local ribbon-like aromaticity in these π-conjugated compounds. Moreover, nonplanar helical π-conjugated compounds have the potential to evolve into spring-like periodic materials with excellent physical properties.