Pharmacoinformatics studies of coenzyme Q10 and potassium polyacrylate on angiotensin-converting enzyme associated with hypertension

J Biomol Struct Dyn. 2023 Sep 5:1-12. doi: 10.1080/07391102.2023.2254395. Online ahead of print.

Abstract

Coenzyme Q10's (CoQ10) favorable impact on cardiovascular diseases risk factors like hypertension and atherosclerosis is linked to the antioxidant action of CoQ10 in these conditions. This study showed the possible effects of CoQ10, potassium polyacrylate (PCK), and valsartan, a reference drug, on the angiotensin-converting enzyme (ACE), a crucial component of the renin-angiotensin system. The Glide tool on Maestro 11.1 was used to calculate the respective binding affinity and binding energy of these compounds towards ACE. The Schrödinger suite was used to run molecular dynamic simulations for 100 ns. The pkCSM tool was used to forecast the pharmacokinetic characteristics and toxicological effects. The SwissADME server was used to estimate the drug-like properties of these compounds. Based on their corresponding scoring values and the negative values of the binding free energies, molecular docking analysis of CoQ10 and PCK revealed that both exhibited favorable binding affinities towards the ACE, with CoQ10 having the highest binding scores. The results showed that both CoQ10 and PCK and the reference drug, valsartan, have some amino acids in common (at the pocket site of ACE) as the key residues for binding to ACE. Both CoQ10 and PCK demonstrated drug-like qualities and were not harmful, according to the predicted pharmacokinetics and toxicology studies. The results of this study suggest that because of its inhibitory interactions with ACE, CoQ10 in particular could be useful in regulating and reducing hypertension.Communicated by Ramaswamy H. Sarma.

Keywords: Angiotensin-converting enzyme; coenzyme Q10; docking; molecular dynamics; potassium polyacrylate.