Dopaminergic neuronal death via necroptosis in Parkinson's disease: A review of the literature

Eur J Neurosci. 2024 Mar;59(6):1079-1098. doi: 10.1111/ejn.16136. Epub 2023 Sep 5.

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive dysfunction and loss of dopaminergic neurons of the substantia nigra pars compacta (SNc). Several pathways of programmed cell death are likely to play a role in dopaminergic neuron death, such as apoptosis, necrosis, pyroptosis and ferroptosis, as well as cell death associated with proteasomal and mitochondrial dysfunction. A better understanding of the molecular mechanisms underlying dopaminergic neuron death could inform the design of drugs that promote neuron survival. Necroptosis is a recently characterized regulated cell death mechanism that exhibits morphological features common to both apoptosis and necrosis. It requires activation of an intracellular pathway involving receptor-interacting protein 1 kinase (RIP1 kinase, RIPK1), receptor-interacting protein 3 kinase (RIP3 kinase, RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL). The potential involvement of this programmed cell death pathway in the pathogenesis of PD has been studied by analysing biomarkers for necroptosis, such as the levels and oligomerization of phosphorylated RIPK3 (pRIPK3) and phosphorylated MLKL (pMLKL), in several PD preclinical models and in PD human tissue. Although there is evidence that other types of cell death also have a role in DA neuron death, most studies support the hypothesis that this cell death mechanism is activated in PD tissues. Drugs that prevent or reduce necroptosis may provide neuroprotection for PD. In this review, we summarize the findings from these studies. We also discuss how manipulating necroptosis might open a novel therapeutic approach to reduce neuronal degeneration in PD.

Keywords: dopamine; mixed lineage kinase domain‐like pseudokinase‐MLKL; movement disorders; neuroprotection; substantia nigra.

Publication types

  • Review

MeSH terms

  • Apoptosis
  • Cell Death
  • Dopamine / metabolism
  • Dopaminergic Neurons* / metabolism
  • Humans
  • Necroptosis
  • Necrosis / metabolism
  • Necrosis / pathology
  • Parkinson Disease* / metabolism

Substances

  • Dopamine