Afidopyropen suppresses silkworm growth and vitality by affecting carbohydrate metabolism and immune function

Pestic Biochem Physiol. 2023 Sep:195:105568. doi: 10.1016/j.pestbp.2023.105568. Epub 2023 Aug 7.

Abstract

Afidopyropen has strong insecticidal toxicity to sucking pests by silencing the vanilloid-type transient receptor potential (TRPV) channels. However, the toxicity of afidopyropen to the Lepidoptera model insect silkworm remain unknown. In this study, the LC50 of afidopyropen to the silkworm at 72 h exposure was 256.82 mg/L. This indicates that afidopyropen is moderately toxic to the silkworm. Long-term exposure to concentrations of 100 mg/L, or less, of afidopyropen, significantly reduced silkworm growth, vitality, silk protein synthesis, and fecundity. A total of 220 differentially expressed genes (DEGs) were detected by transcriptome sequencing, among which 166 were downregulated and 54 were upregulated. Gene Ontology (GO) enrichment analysis showed that the DEGs were enriched in the immune system, immune response and carbohydrate metabolism. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that DEGs were primarily concentrated in carbohydrate metabolism and biosynthesis of neomycin, kanamycin and gentamicin. Genes related to carbohydrate metabolism and immune system pathways in silkworm were detected by quantitative real-time PCR. The results showed that the genes related to carbohydrate metabolism, silk protein synthesis, and immune response were significantly downregulated. These genes included BCL-6 corepressor-like protein 1 (BCORL1), hexokinase type 2 (HEXO2), phosphoserine aminotransferase 1 (PSAT1), relish (Rel), peptidoglycan recognition protein 2 (PGRP2) and 27 kda glycoprotein precursor (P27K). The data demonstrated the toxic effects of afidopyropen against the silkworm and its regulation of genes responsible for immune function and abscissa carbohydrate metabolism.

Keywords: Afidopyropen; Carbohydrate metabolism; Growth; Immune system; Silkworm; Toxic effect.

MeSH terms

  • Animals
  • Bombyx* / genetics
  • Carbohydrate Metabolism
  • Immunity
  • Silk

Substances

  • afidopyropen
  • Silk