Transition metal doped WSi2N4monolayer for water splitting electrocatalysts: a first-principles study

J Phys Condens Matter. 2023 Sep 4;35(48). doi: 10.1088/1361-648X/acf263.

Abstract

High-performance water splitting electrocatalysts are urgently needed in the face of the environmental degradation and energy crisis. The first principles method was used in this study to systematically examine the electronic characteristics of transition metal (Sc, Ti, V, Cr, Mn, Fe, and Ru) doped WSi2N4(TM@WSi2N4) and its potential as oxygen evolution reaction (OER) catalysts. Our study shows that the doping of TM atoms significantly improves the catalytic performance of TM@WSi2N4, especially Fe@WSi2N4shows a low overpotential (ηOER= 470 mV). Interestingly, we found that integrated-crystal orbital Hamilton population and d-band center can be used as descriptors to explain the high catalytic activity of Fe@WSi2N4. Subsequently, Fe@WSi2N4exhibits the best hydrogen evolution reaction (HER) activity with a universal overpotential of 47 mV on N1sites. According to our research, Fe@WSi2N4offers a promising substitute for precious metals as a catalyst for overall water splitting with low OER and HER overpotentials.

Keywords: WSi2N4; electrocatalyst; first principles method; transition metal.