Calycosin protects against chronic prostatitis in rats via inhibition of the p38MAPK/NF-κB pathway

Open Med (Wars). 2023 Aug 28;18(1):20230770. doi: 10.1515/med-2023-0770. eCollection 2023.

Abstract

Currently, the effect and molecular mechanism of calycosin, the main active ingredient of Qinshi Simiao San, which can alleviate chronic prostatitis (CP), on CP remain unclear. This study aimed to elucidate the potential mechanism of action of calycosin in CP in a rat CP model. The prostate tissue morphology was evaluated based on hematoxylin-eosin staining. Enzyme-linked immunosorbent assay was conducted to evaluate inflammatory cytokine and immune factor levels (secretory immunoglobulin A [SIgA]; immunoglobulin G [IgG]) in prostate tissues and serum. Additionally, representative biomarkers of oxidative stress, including malondialdehyde, superoxide dismutase, and catalase were detected using detection kits, and reactive oxygen species release was evaluated using immunofluorescence staining. Furthermore, the p38 mitogen-activated protein kinase (p38MAPK)/NF-kappaB (NF-κB) signaling pathway was analyzed by western blotting. The results showed that calycosin substantially ameliorated the pathological damage to prostate tissues of the CP rats. Moreover, calycosin significantly downregulated interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha, IgG, and SIgA levels. Furthermore, we found that calycosin considerably suppressed oxidative stress and inhibited the activation of the p38MAPK/NF-κB signaling pathway in rats with CP. In summary, our findings revealed that calycosin protects against CP in rats by inhibiting the p38MAPK/NF-κB pathway.

Keywords: calycosin; chronic prostatitis; p38MAPK/NF-κB pathway.