Modelling the Interplay between Responsive Individual Vaccination Decisions and the Spread of SARS-CoV-2

medRxiv [Preprint]. 2023 Aug 25:2023.08.24.23294588. doi: 10.1101/2023.08.24.23294588.

Abstract

The uptake of COVID-19 vaccines remains low despite their high effectiveness. Epidemic models that represent decision-making psychology can provide insight into the potential impact of vaccine promotion interventions in the context of the COVID-19 pandemic. We coupled a network-based mathematical model of SARS-CoV-2 transmission in Georgia, USA with a social-psychological vaccination decision-making model in which vaccine side effects, post-vaccination infections, and other unidentified community-level factors could "nudge" individuals towards vaccine resistance while hospitalization spikes could nudge them towards willingness. Combining an increased probability of hospitalization-prompted resistant-to-willing switches with a decreased probability of willing-to-resistant switches prompted by unidentified community-level factors increased vaccine uptake and decreased SARS-CoV-2 incidence by as much as 30.7% and 24.0%, respectively. The latter probability had a greater impact than the former. This illustrates the disease prevention potential of vaccine promotion interventions that address community-level factors influencing decision-making and anticipate the case curve instead of reacting to it.

Publication types

  • Preprint