Organosilicon-Based Carbon Dots and Their Versatile Applications

Small. 2024 Jan;20(2):e2305933. doi: 10.1002/smll.202305933. Epub 2023 Sep 3.

Abstract

Carbon dots (CDs) are a newly discovered type of fluorescent material that has gained significant attention due to their exceptional optical properties, biocompatibility, and other remarkable characteristics. However, single CDs have some drawbacks such as self-quenching, low quantum yield (QY), and poor stability. To address these issues, researchers have turned to organosilicon, which is known for its green, economical, and abundant properties. Organosilicon is widely used in various fields including optics, electronics, and biology. By utilizing organosilicon as a synthetic precursor, the biocompatibility, QY, and resistance to self-quenching of CDs can be improved. Meanwhile, the combination of organosilicon with CDs enables the functionalization of CDs, which significantly expands their original application scenarios. This paper comprehensively analyzes organosilicon in two main categories: precursors for CD synthesis and matrix materials for compounding with CDs. The role of organosilicon in these categories is thoroughly reviewed. In addition, the paper presents various applications of organosilicon compounded CDs, including detection and sensing, anti-counterfeiting, optoelectronic applications, and biological applications. Finally, the paper briefly discusses current development challenges and future directions in the field.

Keywords: carbon dots; functionalization; matrix; organosilicon; precursor.

Publication types

  • Review