Endoplasmic reticulum stress and alterations of peroxiredoxins in aged hearts

Mech Ageing Dev. 2023 Oct:215:111859. doi: 10.1016/j.mad.2023.111859. Epub 2023 Sep 1.

Abstract

Aging-related cardiovascular disease is influenced by multiple factors, with oxidative stress being a key contributor. Aging-induced endoplasmic reticulum (ER) stress exacerbates oxidative stress by impairing mitochondrial function. Furthermore, a decline in antioxidants, including peroxiredoxins (PRDXs), augments the oxidative stress during aging. To explore if ER stress leads to PRDX degradation during aging, young adult (3 mo.) and aged (24 mo.) male mice were studied. Treatment with 4-phenylbutyrate (4-PBA) was used to alleviate ER stress in young adult and aged mice. Aged hearts showed elevated oxidative stress levels compared to young hearts. However, treatment with 4-PBA to attenuate ER stress reduced oxidative stress in aged hearts, indicating that ER stress contributes to increased oxidative stress in aging. Moreover, aging resulted in reduced levels of peroxiredoxin 3 (PRDX3) in mitochondria and peroxiredoxin 4 (PRDX4) in myocardium. While 4-PBA treatment improved PRDX3 content in aged hearts, it did not restore PRDX4 content in aged mice. These findings suggest that ER stress not only leads to mitochondrial dysfunction and increased oxidant stress but also impairs a vital antioxidant defense through decreased PRDX3 content. Additionally, the results suggest that PRDX4 may contribute an upstream role in inducing ER stress during aging.

Keywords: 4-phenylbutyric acid; Electron transport chain; Oxidative stress; Reactive oxygen species.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antioxidants / metabolism
  • Antioxidants / pharmacology
  • Endoplasmic Reticulum Stress
  • Heart*
  • Male
  • Mice
  • Oxidative Stress
  • Peroxiredoxins* / metabolism

Substances

  • 4-phenylbutylamine
  • Peroxiredoxins
  • Antioxidants