Characterization, Structure, and Reactivity of Hydroxyl Groups on Metal-Oxide Cluster Nodes of Metal-Organic Frameworks: Structural Diversity and Keys to Reactivity and Catalysis

Adv Mater. 2024 Feb;36(5):e2305611. doi: 10.1002/adma.202305611. Epub 2023 Nov 30.

Abstract

Among the most stable metal-organic frameworks (MOFs) are those incorporating nodes that are metal oxide clusters with frames such as Zr6 O8 . This review is a summary of the structure, bonding, and reactivity of MOF node hydroxyl groups, emphasizing those bonded to nodes containing aluminum and zirconium ions. Hydroxyl groups are often present on these nodes, sometimes balancing the charges of the metal ions. They arise during MOF syntheses in aqueous media or in post-synthesis treatments. They are identified with infrared and 1 H nuclear magnetic resonance spectroscopies and characterized by their reactivities with polar compounds such as alcohols. Terminal OH, paired µ2 -OH, and aqua groups on nodes are catalytic sites in numerous reactions. Relatively unreactive hydroxyl groups (such as isolated µ2 -OH groups) may replace reactive groups and inhibit catalysis; some node hydroxyl groups (e.g., µ3 -OH) are mere spectators in catalysis. There are similarities between MOF node hydroxyl groups and those on the surfaces of bulk metal oxides, zeolites, and enzymes, but the comparisons are mostly inexact, and much remains to be understood about MOF node hydroxyl group chemistry. It is posited that understanding and controlling this chemistry will lead to tailored MOFs and improved adsorbents and catalysts.

Keywords: hydroxyl groups; metal oxide clusters; metal-organic frameworks; node ligands; nodes.

Publication types

  • Review