A noninvasive method for whole-genome skin methylome profiling

Br J Dermatol. 2023 Nov 16;189(6):750-759. doi: 10.1093/bjd/ljad316.

Abstract

Background: Ageing, disease and malignant transformation of the skin are associated with changes in DNA methylation. So far, mostly invasive methodologies such as biopsies have been applied in collecting DNA methylation signatures. Tape stripping offers a noninvasive option for skin diagnostics. It enables the easy but robust capture of biologic material in large numbers of participants without the need for specialized medical personnel.

Objectives: To design and validate a methodology for noninvasive skin sample collection using tape stripping for subsequent DNA -methylation analysis.

Methods: A total of 175 participants were recruited and provided tape-stripping samples from a sun-exposed area; 92 provided matched tape-stripping samples from a sun-protected area, and an additional 5 provided matched skin-shave biopsies from the same area. Using -enzymatic conversion and whole-genome Illumina sequencing, we generated genome-wide DNA methylation profiles that were used to evaluate the feasibility of noninvasive data acquisition, to compare with established sampling approaches and to investigate biomarker identification for age and ultraviolet (UV) exposure.

Results: We found that tape-stripping samples showed strong concordance in their global DNA methylation landscapes to those of conventional invasive biopsies. Moreover, we showed sample reproducibility and consistent global methylation profiles in skin tape-stripping samples collected from different areas of the body. Using matched samples from sun-protected and sun-exposed areas of the body we were able to validate the capacity of our method to capture the effects of environmental changes and ageing in a cohort covering various ages, ethnicities and skin types. We found DNA methylation changes on the skin resulting from UV exposure and identified significant age-related hypermethylation of CpG islands, with a pronounced peak effect at 50-55 years of age, including methylation changes in well-described markers of ageing.

Conclusions: These data demonstrate the feasibility of using tape stripping combined with whole-genome sequencing as a noninvasive approach to measuring DNA methylation changes in the skin. In addition, they outline a viable experimental framework for the use of skin tape stripping, particularly when it is performed in large cohorts of patients to identify biomarkers of skin ageing, UV damage and, possibly, to track treatment response to therapeutic interventions.

MeSH terms

  • Biopsy / methods
  • DNA Methylation / genetics
  • Epigenome*
  • Humans
  • Middle Aged
  • Reproducibility of Results
  • Skin* / pathology