MiR-5189-3p Suppresses cell Proliferation, Invasion and Migration Through Targeting EIF5A2 in Laryngeal Squamous Cell Carcinoma

Biochem Genet. 2023 Sep 1. doi: 10.1007/s10528-023-10489-4. Online ahead of print.

Abstract

A growing body of evidence suggests that miR-5189-3p plays a critical role in multiple diseases. This study aimed to investigate the function of miR-5189-3p in laryngeal squamous cell carcinoma (LSCC) and explore its underlying mechanisms. qRT-PCR was designed to determine the expression levels of miR-5189-3p and eukaryotic translation initiation factor 5A2 (EIF5A2), while CCK-8 assay was performed to measure the effects of miR-5189-3p on cell proliferation. Transwell assay was performed to evaluate cell invasion as well as migration, and wound healing assay was applied to demonstrate cell migratory ability. Target gene prediction and luciferase reporter assay were developed to screen the possible target gene of miR-5189-3p, and Western blot was designed to measure EIF5A2 protein expression. MiR-5189-3p was down-regulated in LSCC tissues and cell lines. Up-regulation of miR-5189-3p notably inhibited cell proliferation, invasion, and migration in HEP2 and FADU cells. EIF5A2 was the potential downstream gene of miR-5189-3p, and overexpression of miR-5189-3p apparently reduced EIF5A2 expression. Moreover, reintroduction of EIF5A2 rescued the tumor suppressive effects of miR-5189-3p. MiR-5189-3p functions as a tumor inhibitor in LSCC progression via directly regulating EIF5A2 and may be a potential therapeutic target for LSCC.

Keywords: EIF5A2; Laryngeal carcinoma; Target; miR-5189-3p.