Ionic Liquids-Driven Cluster-to-Cluster Conversion of Polyhydrido Copper(I) Clusters Cu7H5 to Cu8H6 and Cu12H9

Inorg Chem. 2023 Sep 18;62(37):14998-15005. doi: 10.1021/acs.inorgchem.3c01830. Epub 2023 Sep 1.

Abstract

Although ionic liquids (ILs) are of prime interest for the synthesis of various nanomaterials, they are scarcely utilized for the polyhydrido copper(I) [Cu(I)H] clusters. Herein, two air-stable Cu(I)H clusters, [Cu8H6(dppy)6](NTf2)2 (Cu8H6) and {Cu12H9(dppy)6[N(CN)2]3} (Cu12H9), are synthesized in high yields for the first time from the ILs-driven conversion of an unprecedented cluster [Cu7H5(dppy)6](ClO4)2 (Cu7H5) by a facile three-layers diffusion crystal (TLDC) method, strategically introducing IL-NTf2 and IL-N(CN)2 as two types of unusual interfacial crystallized templates, respectively. Their structures are fully characterized by various spectroscopic methods and X-ray crystallography, which shows that the anion of IL plays an important role as an anion template and an anion ligand in controlling the structural conversion of Cu(I)H clusters. Their photophysical properties are also investigated, and it is found that all reported clusters exhibit red luminescence with λem ranging from 600 to 690 nm.