Impact of core-shell perovskite nanocrystals for LED applications: successes, challenges, and prospects

Chem Sci. 2023 Jul 24;14(34):8984-8999. doi: 10.1039/d3sc02955g. eCollection 2023 Aug 30.

Abstract

Perovskite nanocrystals (PeNCs) synthesized by colloidal solution methods are an outstanding case of study due to their remarkable optical features, different from their bulk counterpart, such as a tuneable band gap and narrower photoluminescence emission, altered by the size and shape. However, the stability of these systems needs to be improved to consolidate their application in optoelectronic devices. Improved PeNC quality is associated with a less defective structure, as it affects negatively the photoluminescence quantum yield (PLQY), due to the essential, but at the same time labile interaction between the colloidal capping ligands and the perovskite core. In this sense, it would be extremely effective to obtain an alternative method to stabilize the PeNC phases and passivate the surface, in order to improve both stability and optical properties. This objective can be reached exploiting the structural benefits of the interaction between the perovskite and other organic or inorganic materials with a compatible structure and optical properties and limiting the optical drawbacks. This perspective contemplates different combinations of core/shell PeNCs and the critical steps during the synthesis, including drawbacks and challenges based on their optical properties. Additionally, it provides insights for future light emitting diode (LED) applications and advanced characterization. Finally, the existing challenges and opportunities for core/shell PeNCs are discussed.

Publication types

  • Review