Adsorbate-Induced Adatom Formation on Lithium, Iron, Cobalt, Ruthenium, and Rhenium Surfaces

JACS Au. 2023 Jul 19;3(8):2216-2225. doi: 10.1021/jacsau.3c00256. eCollection 2023 Aug 28.

Abstract

Recent experimental and theoretical studies have demonstrated the reaction-driven metal-metal bond breaking in metal catalytic surfaces even under relatively mild conditions. Here, we construct a density functional theory (DFT) database for the adsorbate-induced adatom formation energy on the close-packed facets of three hexagonal close-packed metals (Co, Ru, and Re) and two body-centered cubic metals (Li and Fe), where the source of the ejected metal atom is either a step edge or a close-packed surface. For Co and Ru, we also considered their metastable face-centered cubic structures. We studied 18 different adsorbates relevant to catalytic processes and predicted noticeably easier adatom formation on Li and Fe compared to the other three metals. The NH3- and CO-induced adatom formation on Fe(110) is possible at room temperature, a result relevant to NH3 synthesis and Fischer-Tropsch synthesis, respectively. There also exist other systems with favorable adsorbate effects for adatom formation relevant to catalytic processes at elevated temperatures (500-700 K). Our results offer insight into the reaction-driven formation of metal clusters, which could play the role of active sites in reactions catalyzed by Li, Fe, Co, Ru, and Re catalysts.