Bridging Trans-Scale Electrode Engineering for Mass CO2 Electrolysis

JACS Au. 2023 Jul 25;3(8):2046-2061. doi: 10.1021/jacsau.3c00174. eCollection 2023 Aug 28.

Abstract

Electrochemical CO2 upgrade offers an artificial route for carbon recycling and neutralization, while its widespread implementation relies heavily on the simultaneous enhancement of mass transfer and reaction kinetics to achieve industrial conversion rates. Nevertheless, such a multiscale challenge calls for trans-scale electrode engineering. Herein, three scales are highlighted to disclose the key factors of CO2 electrolysis, including triple-phase boundaries, reaction microenvironment, and catalytic surface coordination. Furthermore, the advanced types of electrolyzers with various electrode design strategies are surveyed and compared to guide the system architectures for continuous conversion. We further offer an outlook on challenges and opportunities for the grand-scale application of CO2 electrolysis. Hence, this comprehensive Perspective bridges the gaps between electrode research and CO2 electrolysis practices. It contributes to facilitating the mixed reaction and mass transfer process, ultimately enabling the on-site recycling of CO2 emissions from industrial plants and achieving net negative emissions.

Publication types

  • Review