Image-Based High-Throughput Phenotyping in Horticultural Crops

Plants (Basel). 2023 May 22;12(10):2061. doi: 10.3390/plants12102061.

Abstract

Plant phenotyping is the primary task of any plant breeding program, and accurate measurement of plant traits is essential to select genotypes with better quality, high yield, and climate resilience. The majority of currently used phenotyping techniques are destructive and time-consuming. Recently, the development of various sensors and imaging platforms for rapid and efficient quantitative measurement of plant traits has become the mainstream approach in plant phenotyping studies. Here, we reviewed the trends of image-based high-throughput phenotyping methods applied to horticultural crops. High-throughput phenotyping is carried out using various types of imaging platforms developed for indoor or field conditions. We highlighted the applications of different imaging platforms in the horticulture sector with their advantages and limitations. Furthermore, the principles and applications of commonly used imaging techniques, visible light (RGB) imaging, thermal imaging, chlorophyll fluorescence, hyperspectral imaging, and tomographic imaging for high-throughput plant phenotyping, are discussed. High-throughput phenotyping has been widely used for phenotyping various horticultural traits, which can be morphological, physiological, biochemical, yield, biotic, and abiotic stress responses. Moreover, the ability of high-throughput phenotyping with the help of various optical sensors will lead to the discovery of new phenotypic traits which need to be explored in the future. We summarized the applications of image analysis for the quantitative evaluation of various traits with several examples of horticultural crops in the literature. Finally, we summarized the current trend of high-throughput phenotyping in horticultural crops and highlighted future perspectives.

Keywords: horticultural crop; image analysis; phenomics; phenotyping; sensor.

Publication types

  • Review