Multiparametric MRI radiomics for the differentiation of brain glial cell hyperplasia from low-grade glioma

BMC Med Imaging. 2023 Aug 31;23(1):116. doi: 10.1186/s12880-023-01086-3.

Abstract

Background: Differentiating between low-grade glioma and brain glial cell hyperplasia is crucial for the customized clinical treatment of patients.

Objective: Based on multiparametric MRI imaging and clinical risk factors, a radiomics-clinical model and nomogram were constructed for the distinction of brain glial cell hyperplasia from low-grade glioma.

Methods: Patients with brain glial cell hyperplasia and low-grade glioma who underwent surgery at the First Affiliated Hospital of Soochow University from March 2016 to March 2022 were retrospectively included. In this study, A total of 41 patients of brain glial cell hyperplasia and 87 patients of low-grade glioma were divided into training group and validation group randomly at a ratio of 7:3. Radiomics features were extracted from T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), contrast-enhanced T1-weighted imaging (T1-enhanced). Then, LASSO, SVM, and RF models were created in order to choose a model with a greater level of efficiency for calculating each patient's Rad-score (radiomics score). The independent risk factors were identified via univariate and multivariate logistic regression analysis to filter the Rad-score and clinical risk variables in turn. A radiomics-clinical model was next built of which effectiveness was assessed.

Results: Brain glial cell hyperplasia and low-grade gliomas from the 128 cases were randomly divided into 10 groups, of which 7 served as training group and 3 as validation group. The mass effect and Rad-score were two independent risk variables used in the construction of the radiomics-clinical model, and their respective AUCs for the training group and validation group were 0.847 and 0.858. The diagnostic accuracy, sensitivity, and specificity of the validation group were 0.821, 0.750, and 0.852 respectively.

Conclusion: Combining with radiomics constructed by multiparametric MRI images and clinical features, the radiomics-clinical model and nomogram that were developed to distinguish between brain glial cell hyperplasia and low-grade glioma had a good performance.

Keywords: Brain glial cell hyperplasia; Low-grade glioma; Multiparametric MRI images; Radiomics.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Brain / diagnostic imaging
  • Brain / surgery
  • Cell Differentiation
  • Glioma* / diagnostic imaging
  • Glioma* / surgery
  • Humans
  • Hyperplasia
  • Multiparametric Magnetic Resonance Imaging*
  • Neuroglia
  • Retrospective Studies