The effect of anti-IL5 monoclonal antibodies on regulatory and effector T cells in severe eosinophilic asthma

Biomed Pharmacother. 2023 Oct:166:115385. doi: 10.1016/j.biopha.2023.115385. Epub 2023 Aug 30.

Abstract

Introduction: Biological treatments have redesigned the clinical management of severe eosinophilic asthmatic (SA) patients. Despite emerging evidence supporting the role of natural Killer (NK), and T regulatory cells (Treg) in the pathogenesis of asthma, no data is available on the effects of anti-IL5/IL5R therapies on these cell subsets.

Methods: We prospectively enrolled fourteen SA patients treated with benralizumab (n = 7) or mepolizumab (n = 7) and compared them with healthy controls (HC) (n = 11) and mild to moderate asthmatic (MM) patients (n = 9). Clinical parameters were collected at baseline (T0) and during follow-up. Cellular analysis, including the analysis of T/NK cell subsets, was determined through multicolor flow cytometry.

Results: At T0, SA patients showed higher percentages of CD4 TEM (33.3 ± 17.9 HC, 42.6 ± 16.6 MM and 66.1 ± 19.7 in SA; p < 0.0001) than HC and MM patients. With different timing, the two drugs induce a reduction of CD4 TEM ( 76 ± 19 T0; 43 ± 14 T1; 45 ± 23 T6; 62 ± 18 at T24; p < 0.0001 for mepolizumab and 55 ± 21 T0; 55 ± 22 T1; 43 ± 14 T6; 27 ± 12 at T24; p < 0.0001 for benralizumab) and an increase of Treg cells (1.2 ± 1.3 T0; 5.1 ± 2.5 T1; 6.3 ± 3.4 T6; 8.4 ± 4.6 at T24; p < 0.0001 for mepolizumab and 3.4 ± 1.7 T0; 1.9 ± 0.8 T1; 1.9 ± 1 T6; 5.1 ± 2.4 at T24; p < 0.0001 for benralizumab). The change of CD56dim PD-1+ significantly correlated with FEV1% (r = - 0.32; p < 0.01), while Treg expressing PD-1 correlates with the use of oral steroids ( r = 0.36 p = 0.0008) and ACT score (r = 0.36 p = 0.0008) p < 0.001) CONCLUSIONS: Beyond the clinical improvement, anti-IL-5 treatment induces a rebalancing of Treg and T effector cells in patients with SA.

Keywords: Benralizumab; Immune checkpoints; Mepolizumab; Regulatory T cells; Severe asthma.

MeSH terms

  • Antibodies, Monoclonal / therapeutic use
  • Asthma* / drug therapy
  • Flow Cytometry
  • Humans
  • Interleukin-5* / immunology
  • Interleukin-5* / therapeutic use
  • Killer Cells, Natural
  • Programmed Cell Death 1 Receptor*
  • T-Lymphocytes, Regulatory

Substances

  • Programmed Cell Death 1 Receptor
  • Interleukin-5
  • Antibodies, Monoclonal
  • benralizumab
  • mepolizumab