Rotifer distribution patterns in relation to dissolved organic matter in the middle reaches of Huai River Basin during the dry season

Environ Sci Pollut Res Int. 2023 Sep;30(45):101133-101150. doi: 10.1007/s11356-023-29139-8. Epub 2023 Aug 30.

Abstract

Increased dissolved organic matter (DOM) may induce water browning and affect zooplankton communities by changing photochemical environment, microbial food web, and bioavailability of organic carbon supply. However, little is known about the relationship between DOM components and rotifers in natural rivers, relative to the cladocerans and copepods. Here, we investigated the spatial patterns of rotifer distribution in relation to DOM by collecting forty-four water samples from four areas in the middle reaches of Huai River Basin. Results revealed that DOM was described by two humic-like and two protein-like components. There were significant differences in the composition and diversity of rotifer communities among areas, which might be related to autochthonous and allochthonous DOM as well as geographical distances. Specifically, rotifer communities were mainly related to molecular weight, substituents on the aromatic ring, humification level, and protein-like materials. Autochthonous and fresh DOM was positively associated with rotifer abundance and richness, and terrigenous humic-like substances were positively associated with rotifer diversity and evenness. There was a reciprocal effect between rotifer and DOM. Our findings will contribute to the understanding of the possible effects of water browning on rotifer communities, providing new insights into the key role of DOM and rotifer in the energy transfer of aquatic systems.

Keywords: Absorbance; Dissolved organic matter; Distribution; Diversity; Fluorescence; Huai River Basin; Rotifer.