Comparing the variation and influencing factors of CO2 emission from subsidence waterbodies under different restoration modes in coal mining area

Environ Res. 2023 Nov 15;237(Pt 2):116936. doi: 10.1016/j.envres.2023.116936. Epub 2023 Aug 28.

Abstract

Subsidence waterbodies play an important role in carbon cycle in coal mining area. However, little effort has been made to explore the carbon dioxide (CO2) release characteristics and influencing factors in subsidence waterbodies, especially under different restoration modes. Here, we measured CO2 release fluxes (F(CO2)) across Anguo wetland (AW), louts pond (LP), fishpond (FP), fishery-floating photovoltaic wetland (FFPV), floating photovoltaic wetland (FPV) in coal mining subsidence area, with unrestored subsidence waterbodies (SW) and unaffected normal Dasha river (DR) as the control area. We sampled each waterbody and tested which physical, chemical, and biological characteristics of water and sediment related to variability in CO2. The results indicated that F(CO2) exhibited the following patterns: FFPV > FPV > FP > SW > DR > LP > AW. Trophic lake index (TLI) and microbial biomass carbon content (MBC) in sediment had a positive impact on F(CO2). The dominant archaea Euryarchaeota and Thaumarchaeota, and dominant bacteria Proteobacteria promoted F(CO2). This study can help more accurately quantify CO2 emissions and guide CO2 future emission reduction and subsidence waterbodies estoration.

Keywords: CO(2) flux; Coal mining area; Different restoration modes; Environmental factor; Subsidence waterbodies.