Ovariectomy-Induced Arterial Stiffening Differs from Vascular Aging and is Reversed by GPER Activation

bioRxiv [Preprint]. 2023 Aug 14:2023.08.10.552881. doi: 10.1101/2023.08.10.552881.

Abstract

Arterial stiffness is a cardiovascular risk factor and dramatically increases as women transition through menopause. The current study assessed whether a mouse model of menopause increases arterial stiffness in a similar manner to aging, and whether activation of the G protein-coupled estrogen receptor (GPER) could reverse stiffness. Female C57Bl/6J mice were ovariectomized (OVX) at 10 weeks of age or aged to 52 weeks, and some mice were treated with GPER agonists. OVX and aging increased pulse wave velocity to a similar extent independent of changes in blood pressure. Aging increased carotid wall thickness, while OVX increased material stiffness without altering vascular geometry. RNA-Seq analysis revealed that OVX downregulated smooth muscle contractile genes. The enantiomerically pure GPER agonist, LNS8801, reversed stiffness in OVX mice to a greater degree than the racemic agonist G-1. In summary, OVX and aging induced arterial stiffening via potentially different mechanisms. Aging was associated with inward remodeling while OVX induced material stiffness independent of geometry and a loss of the contractile phenotype. This study helps to further our understanding of the impact of menopause on vascular health and identifies LNS8801 as a potential therapy to counteract this detrimental process in women.

Publication types

  • Preprint