Evaluation of standard breast ultrasonography by adding two-dimensional and three-dimensional shear wave elastography: a prospective, multicenter trial

Eur Radiol. 2024 Feb;34(2):945-956. doi: 10.1007/s00330-023-10057-9. Epub 2023 Aug 30.

Abstract

Objective: To reduce the number of biopsies performed on benign breast lesions categorized as BI-RADS 4-5, we investigated the diagnostic performance of combined two-dimensional and three-dimensional shear wave elastography (2D + 3D SWE) with standard breast ultrasonography (US) for the BI-RADS assessment of breast lesions.

Methods: A total of 897 breast lesions, categorized as BI-RADS 3-5, were subjected to standard breast US and supplemented by 2D SWE only and 2D + 3D SWE analysis. Based on the malignancy rate of less than 2% for BI-RADS 3, lesions assessed by standard breast US were reclassified with SWE assessment.

Results: After standard breast US evaluation, 268 (46.1%) participants underwent benign biopsies in BI-RADS 4-5 lesions. By using separated cutoffs for upstaging BI-RADS 3 at 120 kPa and downstaging BI-RADS 4a at 90 kPa in 2D + 3D SWE reclassification, 123 (21.2%) participants underwent benign biopsy, resulting in a 54.1% reduction (123 versus 268).

Conclusion: Combining 2D + 3D SWE with standard breast US for reclassification of BI-RADS lesions may achieve a reduction in benign biopsies in BI-RADS 4-5 lesions without sacrificing sensitivity unacceptably.

Clinical relevance statement: Combining 2D + 3D SWE with US effectively reduces benign biopsies in breast lesions with categories 4-5, potentially improving diagnostic accuracy of BI-RADS assessment for patients with breast lesions.

Trial registration: ChiCTR1900026556 KEY POINTS: • Reduce benign biopsy is necessary in breast lesions with BI-RADS 4-5 category. • A reduction of 54.1% on benign biopsies in BI-RADS 4-5 lesions was achieved using 2D + 3D SWE reclassification. • Adding 2D + 3D SWE to standard breast US improved the diagnostic performance of BI-RADS assessment on breast lesions: specificity increased from 54 to 79%, and PPV increased from 54 to 71%, with slight loss in sensitivity (97.2% versus 98.7%) and NPV (98.1% versus 98.7%).

Keywords: Biopsy; Breast neoplasms; Elasticity imaging techniques; Ultrasonography.

Publication types

  • Clinical Trial
  • Multicenter Study

MeSH terms

  • Breast / diagnostic imaging
  • Breast / pathology
  • Breast Neoplasms* / diagnostic imaging
  • Breast Neoplasms* / pathology
  • Diagnosis, Differential
  • Elasticity Imaging Techniques* / methods
  • Female
  • Humans
  • Prospective Studies
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Ultrasonography, Mammary / methods