Molecularly imprinted polymer-based sensors for identification volatile compounds in pharmaceutical products: in silico rational design

J Biomol Struct Dyn. 2023 Aug 29:1-11. doi: 10.1080/07391102.2023.2252090. Online ahead of print.

Abstract

The present study aimed to strategically design a Molecularly Imprinted Polymer (MIP) with selective extraction capabilities for volatile compounds found in pork. These specific volatile compounds, such as 3-methyl-1-butanol, 1-nonanal, octanal, hexanal, 2-pentyl-furan, 1-penten-3-one, N-morpholinomethyl-isopropyl-sulfide, methyl butyrate, and (E,E)-2,4-decadienal, are primarily responsible for the distinctive aroma and flavor characteristics associated with pork. Molecular dynamics simulations were employed to investigate the stability of the pre-polymerization system, simulating the interactions between the volatile compounds as templates, 4-hydroxyethyl methacrylate (HEMA) as monomers, and ethylene glycol dimethacrylate (EGDMA) as crosslinkers. Computational simulations revealed that the optimal mole ratio of 1:4:20 for templates, monomers, and crosslinkers resulted in the most favorable functional radial distribution and exhibited the strongest interactions. To validate the computational findings, additional analyses were performed utilizing Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA), radial distribution function (RDF), and hydrogen bond (HBond) occupancy. The calculated binding free energy demonstrated that all template molecules were capable to bind with both the monomers and crosslinkers, including 1-penten-3-one and N-morpholinomethyl-isopropyl-sulfide displaying the strongest interactions, with values of -12,674 kJ/mol and -11,646 kJ/mol, respectively. The congruence between the results obtained from the molecular simulation analyses highlights the crucial role of molecular dynamics simulations in the study and development of MIP for the analysis of marker compounds present in pork.Communicated by Ramaswamy H. Sarma.

Keywords: Volatile compounds; in silico design; molecular dynamics simulations; molecularly imprinted polymer (MIP); pharmaceutical products.