Circ-SFMBT2 sponges miR-224-5p to induce ketamine-induced cystitis by up-regulating metadherin (MTDH)

Hum Cell. 2023 Nov;36(6):2040-2054. doi: 10.1007/s13577-023-00972-w. Epub 2023 Aug 29.

Abstract

There is increasing evidence that circular RNAs (circRNAs) play significant roles in various biological processes, yet few reports have examined their roles and molecular mechanisms in ketamine-induced cystitis (KIC). This study examines the possible molecular mechanisms underlying the circRNA-microRNA-mRNA regulatory network in the development of KIC. Transcriptome data were collected, and bioinformatics analysis was conducted to create a circRNA-miRNA-mRNA regulatory network (ceRNA network) associated with the occurrence of KIC. Human bladder epithelial cells (SV-HUC-1) were used in in vitro cell assays. The binding affinity among circ-SFMBT2, miR-224-5p, and Metadherin (MTDH) was identified. To investigate the effects of circ-SFMBT2/miR-224-5p/MTDH on bladder function, KIC mouse models were induced by intraperitoneal injection of ketamine, and gain- or loss-of-function experiments were conducted. Our results demonstrate that MTDH may be a key gene involved in the occurrence of KIC. Both bioinformatics analysis and in vitro cell assays verified that circ-SFMBT2 can competitively bind to miR-224-5p, and miR-224-5p can target and inhibit MTDH. In the bladder tissues of KIC mice, circ-SFMBT2 and MTDH were up-regulated, while miR-224-5p was down-regulated. Animal experiments further confirmed that circ-SFMBT2 can up-regulate MTDH expression by sponging miR-224-5p, thereby exacerbating bladder dysfunction in KIC mice. This study proved that circ-SFMBT2 up-regulates MTDH by competitively binding to miR-224-5p, thereby exacerbating the bladder dysfunction of KIC.

Keywords: Bladder function; Circ-SFMBT2; Ketamine-induced cystitis; MTDH; ceRNA network; microRNA-224-5p.