A rapid and highly sensitive ctDNA detection platform based on locked nucleic acid-assisted catalytic hairpin assembly circuits

Anal Methods. 2023 Sep 14;15(35):4548-4554. doi: 10.1039/d3ay01150j.

Abstract

As a promising biomarker of liquid biopsy, circulating tumor DNA (ctDNA) plays a paramount role in the early diagnosis of noninvasive cancer. The isothermal catalytic hairpin assembly (CHA) strategy has great potential for in vitro detection of ctDNA in low abundance. However, a traditional CHA strategy for ctDNA detection at the earlier stages of cancer remains extremely challenging, as annoying signal leakage from the 'breathing' phenomenon and nuclease degradation occur. Herein, we report a locked nucleic acid (LNA)-incorporated CHA circuit for the rapid and sensitive detection of target ctDNA. The target ctDNA intelligently catalyzed LNA-modified hairpins H1 and H2via a range of toehold-mediated strand displacement processes, leading to the continuous generation of an H1-H2 hybrid for the amplified fluorescence signal. In comparison to conventional CHA circuits, the stronger binding affinity of LNA-DNA bases greatly inhibited the breathing effect, which endowed it with greater thermodynamic stability and resistance to nuclease degradation in the LNA-assisted CHA system, thus achieving a high signal gain. The developed CHA circuit demonstrated excellent performance during target ctDNA detection, with a linear range from 10 pM to 5 nM, and its target detection limit was reached at 3.3 pM. Moreover, this LNA-assisted CHA system was successfully applied to the analysis of target ctDNA in clinical serum samples of breast cancer patients. This updated CHA system provides a general and robust platform for the sensitive detection of biomarkers of interest, thus facilitating the accurate identification and diagnosis of cancers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms* / diagnosis
  • Breast Neoplasms* / genetics
  • Carcinoma in Situ*
  • Catalysis
  • Endonucleases
  • Female
  • Humans
  • Oligonucleotides

Substances

  • locked nucleic acid
  • Oligonucleotides
  • Endonucleases