Genomic analyses indicate the North American Ap-ha variant of the tick-vectored bacterium Anaplasma phagocytophilum was introduced from Europe

Parasit Vectors. 2023 Aug 28;16(1):301. doi: 10.1186/s13071-023-05914-x.

Abstract

Background: Anaplasma phagocytophilum is a tick-vectored, obligately intracellular bacterium that infects a diversity of vertebrate hosts. In North America, the Ap-ha variant of A. phagocytophilum can cause dangerous infections in humans, whereas symptomatic human infections in Europe are rare. Conversely, the European host-generalist ecotype of A. phagocytophilum frequently causes illness in domestic ruminants while no comparable infections have been recorded from North America. Despite these differences in pathogenicity, the Ap-ha variant is closely aligned phylogenetically with the European host-generalist ecotype. Furthermore, North American populations of A. phagocytophilum are less genetically diverse than those in Europe. Taken together, these observations suggest that the North American Ap-ha variant may represent an introduced population of this bacterium.

Methods: Data from publicly available whole genomes of A. phagocytophilum were used to compare phylogeographic patterns and the extent of genetic divergence between the North American Ap-ha variant and the European host-generalist ecotype.

Results: The results confirm that North American Ap-ha samples are phylogenetically nested within the diversity of the European host-generalist ecotype, and that Ap-ha likely radiated within the last 100 years. As expected, the Ap-ha variant also exhibited relatively low genetic diversity levels compared to the European host-generalist ecotype. Finally, North American Ap-ha harbored significantly more derived alleles than the European host-generalist A. phagocytophilum population.

Conclusions: Collectively, these results support the hypothesis that the Ap-ha variant was recently introduced to North America from Europe and underwent a strong genetic bottleneck during this process (i.e. a 'founder event'). Adaptation to novel vectors may have also played a role in shaping genetic diversity and divergence patterns in these pathogenic bacteria. These findings have implications for future studies aimed at understanding evolutionary patterns and pathogenicity variation within A. phagocytophilum.

Keywords: Anaplasmataceae; Founder event; Genetic bottleneck; Ixodes; Phylogeography.

MeSH terms

  • Anaplasma phagocytophilum* / genetics
  • Bacteria
  • Europe
  • Genomics
  • Humans
  • North America