Chemoenzymatic synthesis of genetically-encoded multivalent liquid N-glycan arrays

Nat Commun. 2023 Aug 28;14(1):5237. doi: 10.1038/s41467-023-40900-y.

Abstract

Cellular glycosylation is characterized by chemical complexity and heterogeneity, which is challenging to reproduce synthetically. Here we show chemoenzymatic synthesis on phage to produce a genetically-encoded liquid glycan array (LiGA) of complex type N-glycans. Implementing the approach involved by ligating an azide-containing sialylglycosyl-asparagine to phage functionalized with 50-1000 copies of dibenzocyclooctyne. The resulting intermediate can be trimmed by glycosidases and extended by glycosyltransferases yielding a phage library with different N-glycans. Post-reaction analysis by MALDI-TOF MS allows rigorous characterization of N-glycan structure and mean density, which are both encoded in the phage DNA. Use of this LiGA with fifteen glycan-binding proteins, including CD22 or DC-SIGN on cells, reveals optimal structure/density combinations for recognition. Injection of the LiGA into mice identifies glycoconjugates with structures and avidity necessary for enrichment in specific organs. This work provides a quantitative evaluation of the interaction of complex N-glycans with GBPs in vitro and in vivo.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Asparagine*
  • Azides
  • Bacteriophages*
  • Gene Library
  • Glycosylation
  • Mice

Substances

  • Asparagine
  • Azides