Deciphering the Cell-Specific Effect of Osteoblast-Macrophage Crosstalk in Periodontitis

Tissue Eng Part A. 2023 Nov;29(21-22):579-593. doi: 10.1089/ten.TEA.2023.0104. Epub 2023 Oct 6.

Abstract

In periodontitis, the bone remodeling process is disrupted by the prevalent involvement of bacteria-induced proinflammatory macrophage cells and their interaction with osteoblast cells residing within the infected bone tissue. The complex interaction between the cells needs to be deciphered to understand the dominant player in tipping the balance from osteogenesis to osteoclastogenesis. Yet, only a few studies have examined the crosstalk interaction between osteoblasts and macrophages using biomimetic three-dimensional (3D) tissue-like matrices. In this study, we created a cell-laden 3D tissue analog to study indirect crosstalk between these two cell types and their direct synergistic effect when cultured on a 3D scaffold. The cell-specific role of osteoclast differentiation was investigated through osteoblast- and proinflammatory macrophage-specific feedback studies. The results suggested that when macrophages were exposed to osteoblasts-derived conditioned media from the mineralized matrix, the M1 macrophages tended to maintain their proinflammatory phenotype. Further, when osteoblasts were exposed to secretions from proinflammatory macrophages, they demonstrated elevated receptor activator of nuclear factor-κB ligand (RANKL) expression and decreased alkaline phosphate (ALP) activities compared to osteoblasts exposed to only osteogenic media. In addition, the upregulation of tumor necrosis factor-alpha (TNF-α) and c-Fos in proinflammatory macrophages within the 3D matrix indirectly increased the RANKL expression and reduced the ALP activity of osteoblasts, promoting osteoclastogenesis. The contact coculturing with osteoblast and proinflammatory macrophages within the 3D matrix demonstrated that the proinflammatory markers (TNF-α and interleukin-1β) expressions were upregulated. In contrast, anti-inflammatory markers (c-c motif chemokine ligand 18 [CCL18]) were downregulated, and osteoclastogenic markers (TNF receptor associated factor 6 [TRAF6] and acid phosphatase 5, tartrate resistant [ACP5]) were unchanged. The data suggested that the osteoblasts curbed the osteoclastogenic differentiation of macrophages while macrophages still preserved their proinflammatory lineages. The osteoblast within the 3D coculture demonstrated increased ALP activity and did not express RANKL significantly different than the osteoblast cultured within a 3D collagen matrix without macrophages. Contact coculturing has an anabolic effect on bone tissue in a bacteria-derived inflammatory environment.

Keywords: conditioned-media culturing; direct coculturing; macrophages; osteoblasts; osteoclastogenesis; osteoclasts; periodontitis; receptor activator of nuclear factor-κB ligand (RANKL).

MeSH terms

  • Cell Differentiation
  • Humans
  • Macrophages / metabolism
  • Osteoblasts / metabolism
  • Osteoclasts*
  • Osteogenesis
  • Periodontitis* / metabolism
  • RANK Ligand / metabolism
  • RANK Ligand / pharmacology
  • Tumor Necrosis Factor-alpha / pharmacology

Substances

  • Tumor Necrosis Factor-alpha
  • RANK Ligand