Lithium-Induced Reorientation of Few-Layer MoS2 Films

Chem Mater. 2023 Aug 2;35(16):6246-6257. doi: 10.1021/acs.chemmater.3c00669. eCollection 2023 Aug 22.

Abstract

Molybdenum disulfide (MoS2) few-layer films have gained considerable attention for their possible applications in electronics and optics and also as a promising material for energy conversion and storage. Intercalating alkali metals, such as lithium, offers the opportunity to engineer the electronic properties of MoS2. However, the influence of lithium on the growth of MoS2 layers has not been fully explored. Here, we have studied how lithium affects the structural and optical properties of the MoS2 few-layer films prepared using a new method based on one-zone sulfurization with Li2S as a source of lithium. This method enables incorporation of Li into octahedral and tetrahedral sites of the already prepared MoS2 films or during MoS2 formation. Our results discover an important effect of lithium promoting the epitaxial growth and horizontal alignment of the films. Moreover, we have observed a vertical-to-horizontal reorientation in vertically aligned MoS2 films upon lithiation. The measurements show long-term stability and preserved chemical composition of the horizontally aligned Li-doped MoS2.