Raman ConvMSANet: A High-Accuracy Neural Network for Raman Spectroscopy Blood and Semen Identification

ACS Omega. 2023 Aug 11;8(33):30421-30431. doi: 10.1021/acsomega.3c03572. eCollection 2023 Aug 22.

Abstract

Animal blood and semen analysis plays a significant role in national biological resource management, wildlife conservation, and customs security quarantine. Traditional blood analysis methods have disadvantages, such as complex sample preparation, time consumption, and false positives. Therefore, proposing a rapid and highly accurate analysis method is highly valuable. Raman spectroscopy has been widely used in blood analysis, and efficient and accurate analysis results can be obtained through the machine learning algorithm feature extraction. Recently, the transformer network structure was applied to Raman spectroscopy recognition. However, the multihead self-attention mechanism does not perform well in extracting local feature peaks, although it obtains global feature relations. This paper proposes a neural network based on the combination of one-dimensional convolution and multihead self-attention mechanism (Raman ConvMSANet) to identify 52 species of blood and semen Raman spectra. The network can achieve reliable identification effects in multiclassification and sample imbalance situations, and the average identification accuracy of blood and semen can reach more than 98.5%. The proposed network model can be applied not only to blood and semen identification but also to other biological fields.