Application of polyglycolic acid sheets and basic fibroblast growth factor to prevent esophageal stricture after endoscopic submucosal dissection in pigs

J Gastroenterol. 2023 Nov;58(11):1094-1104. doi: 10.1007/s00535-023-02032-4. Epub 2023 Aug 27.

Abstract

Background: Endoscopic submucosal dissection (ESD) has been the first-line treatment for early-stage esophageal cancer. However, it often causes postoperative stricture in cases requiring wide dissection. Basic fibroblast growth factor (bFGF) reportedly has anti-scarring effects during cutaneous wound healing. We hypothesized that suppressing myofibroblast activation will prevent stricture after esophageal ESD.

Methods: We resected a complete porcine esophagus circumference section by ESD. To investigate the preventive effect of bFGF on esophageal stricture formation after ESD, we endoscopically applied bFGF-soaked poly-glycolic acid (PGA) sheets onto the wound bed after ESD and fixed them by spraying fibrin glue (PGA + bFGF group), PGA sheets alone onto the wound bed and fixed them by spraying fibrin glue (PGA group), or nothing (control group). After removing the esophagus on day 22, we evaluated the mucosal constriction rate.

Results: Compared with those in the control group, esophageal stricture was significantly reduced in the PGA + bFGF group, and the areas stained with α-SMA and calponin-1 antibodies were significantly inhibited in the PGA + bFGF and PGA groups. The thickness of the fibrous layer in the PGA + bFGF group was uniform compared to that of the other groups. Thus, PGA + bFGF inhibited the development of unregulated fibroblasts in the acute phase, leading to uniform wound healing.

Conclusions: Stenosis after esophageal ESD is related to fibrosis in the acute phase. Administration of PGA and bFGF suppresses myofibroblast activation in the acute phase, thereby preventing esophageal constriction in pigs.

Keywords: Basic fibroblast growth factor; Endoscopic submucosal dissection; Esophageal stricture; Polyglycolic acid.