The fungicide tebuconazole modulates the sodium current of human NaV1.5 channels expressed in HEK293 cells

Food Chem Toxicol. 2023 Oct:180:113992. doi: 10.1016/j.fct.2023.113992. Epub 2023 Aug 24.

Abstract

The fungicide Tebuconazole is a widely used pesticide in agriculture and may cause cardiotoxicity. In our present investigation the effect of Tebuconazole on the sodium current (INa) of human cardiac sodium channels (NaV1.5) was studied using a heterologous expression system and whole-cell patch-clamp techniques. Tebuconazole reduced the amplitude of the peak INa in a concentration- and voltage-dependent manner. At the holding potential of -120 mV the IC50 was estimated at 204.1 ± 34.3 μM, while at -80 mV the IC50 was 0.3 ± 0.1 μM. The effect of the fungicide is more pronounced at more depolarized potentials, indicating a state-dependent interaction. Tebuconazole caused a negative shift in the half-maximal inactivation voltage and delayed recovery from fast inactivation of INa. Also, it enhanced closed-state inactivation, exhibited use-dependent block in a voltage-dependent manner. Furthermore, Tebuconazole reduced the increase in late sodium current induced by the pyrethroid insecticide β-Cyfluthrin. These results suggest that Tebuconazole can interact with NaV1.5 channels and modulate INa. The observed effects may lead to decreased cardiac excitability through reduced INa availability, which could be a new mechanism of cardiotoxicity to be attributed to the fungicide.

Keywords: Cardiac sodium channel; Cardiotoxicity; Fungicide; Sodium current; Tebuconazole.