Effect of surfactant on urease-producing flora from waste activated sludge using microbially induced calcite precipitation technology to suppress coal dust

Environ Res. 2023 Nov 15;237(Pt 2):116941. doi: 10.1016/j.envres.2023.116941. Epub 2023 Aug 24.

Abstract

The wettability of microbially induced calcite precipitation (MICP) is a challenge in dust suppression. Herein, the tolerance of urease-producing flora to surfactants was investigated. The optimal tolerance concentrations of the urease-producing flora to sodium dodecylbenzene sulfonate (SDBS, anionic surfactant), alkyl polyglycoside (APG, non-ionic surfactant), and cocamidopropyl betaine (CAB, zwitterionic surfactant), and were 0.2%, 0.1%, and 0.05%. The cetyltrimethylammonium bromide (CTAB, cationic surfactant) inhibited urease production by urease-producing flora. The mineralization products of SDBS, APG, and CAB treatments were all transformed into calcite. The wind resistance test showed that the mass loss of all samples is less than 0.1%. The rain resistance and hardness tests showed that 0.2% SBDS had the best effect, followed by 0.1% APG and 0.05% CAB, and finally, No surfactants. Microbiome analysis showed that the abundance of Sporosarcina and Unclassified_bacillaceae reduced, and the intense competition between Paenalcaligenes and Sporosarcina are essential reasons for reducing urease activity. SDBS and APG could reduce the pathogenic risk of microbial dust suppressants. This study will facilitate the practical application of microbial dust suppressants.

Keywords: Dust suppression; MICP; Microbiome analysis; Surfactant; Urease-producing flora.