Experimental Analysis of the Magnetic Leakage Detection of a Corroded Steel Strand Due to Vibration

Sensors (Basel). 2023 Aug 11;23(16):7130. doi: 10.3390/s23167130.

Abstract

The self-magnetic flux leakage (SMFL) detection technique has great potential in the corrosion detection of bridge stay cables due to its advantages of small testing equipment, high accuracy, and fast testing rate. However, the vibration effect in the cable's SMFL detection is unclear. To address this, the influence of vibration on the magnetic field distribution of cable structure is analyzed theoretically. According to the theoretical model, the effect of vibration on SMFL detection primarily manifests as displacement changes (displacement-added magnetic field) and defect shape changes (deformation-added magnetic field). SMFL detection experiments are conducted on steel strands. The results demonstrate that the displacement-added magnetic field exhibits statistical characteristics in the form of a normal distribution, fluctuating around the zero value. The impact of the deformation-added magnetic field on SMFL is linearly correlated with the corrosion ratio c. Moreover, a corrosion characterization index A was proposed and has an excellent linear fit with the corrosion ratio c. The index A effectively improves the accuracy of corrosion detection and provides early warning for the maintenance of cable structures.

Keywords: cable structure; corrosion; self-magnetic flux leakage; stranded steel; vibration.