Development of Test Programs for the Biorelevant Characterization of Esophageal-Applied Dosage Forms

Polymers (Basel). 2023 Aug 17;15(16):3430. doi: 10.3390/polym15163430.

Abstract

In the local treatment of the esophageal mucosa, the retention time of the different dosage forms, such as tablets, films or liquids, is of high relevance for the effective treatment of diseases. Unfortunately, there are only few in vitro models describing the esophageal route of administration. To predict the behaviour of an esophageal-applied dosage form, it is necessary to simulate the site of application in a biorelevant way. The aim of this work was to develop two test setups for an esophageal peristalsis model which was described in a previous study. Different parameters such as flow rate, peristalsis, angle of inclination or mucous membrane were varied or introduced into the model. A stimulated and unstimulated modus were developed and tested with two different dosage forms. The time until the dosage form was cleared from the in vitro model was shorter with the stimulated than with the unstimulated modus. Also, esophageal-applied films had a prolonged transit time compared to a viscous syrup. The modification of the simulated esophageal surface made it possible to estimate the retention time of the dosage forms. It could be demonstrated that the residence time of a dosage form depends on different parameters affecting each other.

Keywords: biorelevant in vitro model; esophageal transport; esophagus; films; local drug targeting; mucoadhesive polymer; peristalsis; saliva flow.

Grants and funding

This research received no external funding.