A Novel Dual-Payload ADC for the Treatment of HER2+ Breast and Colon Cancer

Pharmaceutics. 2023 Jul 26;15(8):2020. doi: 10.3390/pharmaceutics15082020.

Abstract

Antibody-drug conjugates (ADCs) have demonstrated a great therapeutic potential against cancer due to their target specificity and cytotoxicity. To exert a maximum therapeutic effect on cancerous cells, we have conjugated two different payloads to different amino acids, cysteines (cys) and lysines (lys), on trastuzumab, which is a humanised anti-HER2 monoclonal antibody. First, trastuzumab was conjugated with monomethyl auristatin E (MMAE), an antimitotic agent, through a cleavable linker (Val-Cit) to prepare ADC (Tmab-VcMMAE). Then, the ADC (Tmab-VcMMAE) was conjugated with a second antimitotic agent, Mertansine (DM1), via a non-cleavable linker Succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) to form a dual conjugate (Tmab-VcMMAE-SMCC-DM1). Our results indicated that the dual-payload conjugate, Tmab-VcMMAE-SMCC-DM1, had a synergistic and superior cytotoxic effect compared to trastuzumab alone. Ultimately employing a dual conjugation approach has the potential to overcome treatment-resistance and tumour recurrences and could pave the way to employ other payloads to construct dual (or multiple) payload complexes.

Keywords: ADCs; DLD-1; SK-BR-3; SMCC-DM1; VcMMAE; antibody drug conjugates; antimitotic; cytotoxic assay; microtubule polymerization; target specific; trastuzumab.

Grants and funding

This research received no external funding.