Effect of Tempering Temperature on Hydrogen Embrittlement of SCM440 Tempered Martensitic Steel

Materials (Basel). 2023 Aug 21;16(16):5709. doi: 10.3390/ma16165709.

Abstract

The effect of tempering temperature on the hydrogen embrittlement characteristics of SCM440 tempered martensitic steels was investigated in terms of their microstructure and hydrogen desorption behavior. The microstructures were characterized using scanning and transmission electron microscopy, as well as X-ray diffraction and electron backscattered diffraction analysis. Thermal desorption analysis (TDA) was performed to examine the amount and trapping behavior of hydrogen. The cementite morphology of the SCM440 tempered martensitic steels gradually changed from a long lamellar shape to a segmented short-rod shape with an increasing tempering temperature. A slow strain rate tensile test was conducted after electrochemical hydrogen charging to evaluate the hydrogen embrittlement resistance. The hydrogen embrittlement resistance of the SCM440 tempered martensitic steels increased with an increasing tempering temperature because of the decrease in the fraction of the low-angle grain boundaries and dislocation density. The low-angle grain boundaries and dislocations, which acted as reversible hydrogen trap sites, were critical factors in determining the hydrogen embrittlement resistance, and this was supported by the decreased diffusible hydrogen content as measured by TDA. Fine carbides formed in the steel tempered at a relatively higher temperature acted as irreversible hydrogen trap sites and contributed to improving the hydrogen embrittlement resistance. Our findings can suggest that the tempering temperature of SCM440 tempered martensitic steel plays an important role in determining its hydrogen embrittlement resistance.

Keywords: SCM440; hydrogen embrittlement; tempered martensitic steel; tempering temperature.