Influence of β-Stabilizer Element on Microstructure and Mechanical Behavior of Porous Titanium Alloy Synthesized by Liquid Metal Dealloying

Materials (Basel). 2023 Aug 19;16(16):5699. doi: 10.3390/ma16165699.

Abstract

The metallic implant materials for load-bearing applications typically possess a significantly higher stiffness when compared with that of human bone. In some cases, this stiffness mismatch leads to a stress-shielding effect and eventual loosing of the implant. Porous metallic materials are suitable candidates to overcome this problem. In this study, we synthesized low modulus open porous TiFe alloy by liquid metal dealloying of the precursor Ti47.5Fe2.5Cu50 (at.%) material in liquid Mg. Upon liquid metal dealloying, Cu was selectively dissolved from the precursor, and the remaining Ti and Fe elements were reorganized into a bicontinous porous structure. The synthesized TiFe alloy is composed of α-titanium and β-titanium phases. The average measured ligament size is in the micrometer range. It was found that a higher dealloying temperature leads to a pronounced coarsening of the microstructure. The open porous TiFe alloy possesses a low elastic modulus of about 6.4-6.9 GPa. At the same time, its yield strength value reaches about 185 MPa due to the α + β microstructure. Its attractive mechanical properties for biomedical applications, together with its open porous structure, indicate the potential of porous TiFe alloys to be used as implants.

Keywords: biomedical material; liquid metal dealloying; mechanical behavior; porous material; titanium alloy.