Response Surface Optimization for the Enhancement of the Extraction of Bioactive Compounds from Citrus limon Peel

Antioxidants (Basel). 2023 Aug 12;12(8):1605. doi: 10.3390/antiox12081605.

Abstract

Citrus limon is among the species of the genus Citrus that dominates the world market. It is highly nutritious for humans as it contains twice the amount of the suggested daily intake of ascorbic acid and is also a good source of phenolic compounds, carotenoids, and other bioactive compounds. This study aimed to identify the optimal extraction procedures and parameters to obtain the maximum quantity of bioactive components from lemon peel by-products. Various extraction techniques, including stirring, ultrasound, and pulsed electric field, were evaluated, along with factors such as extraction time, temperature, and solvent composition. The results revealed that simple stirring for 150 min at 20 °C proved to be the most effective and practical method. The ideal solvent mixture consisted of 75% ethanol and 25% water, highlighting the crucial role of solvent composition in maximizing extraction efficiency. Among the extracted compounds were phenolics, ascorbic acid, and carotenoids. Under optimum extraction conditions, the extract was found to contain high total phenolic content (TPC) (51.2 mg of gallic acid equivalents, GAE/g dry weight), total flavonoid content (TFC) (7.1 mg of rutin equivalents, RtE/g dry weight), amounts of ascorbic acid (3.7 mg/g dry weight), and total carotenoids content (TCC) (64.9 μg of β-carotene equivalents, CtE/g). Notably, the extracts demonstrated potent antioxidant properties (128.9 μmol of ascorbic acid equivalents, AAE/g; and 30.3 μmol of AAE/g as evidenced by FRAP and DPPH assays, respectively), making it a promising ingredient for functional foods and cosmetics. The study's implications lie in promoting sustainable practices by converting lemon peel into valuable resources and supporting human health and wellness through the consumption of natural antioxidants.

Keywords: antioxidant activity; ascorbic acid; carotenoids; citrus; polyphenols; pulsed electric field; ultrasound-assisted extraction.

Grants and funding

This research received no external funding.