The Radiobiological Characterization of Human and Porcine Lens Cells Suggests the Importance of the ATM Kinase in Radiation-Induced Cataractogenesis

Cells. 2023 Aug 21;12(16):2118. doi: 10.3390/cells12162118.

Abstract

Studies about radiation-induced human cataractogenesis are generally limited by (1) the poor number of epithelial lens cell lines available (likely because of the difficulties of cell sampling and amplification) and (2) the lack of reliable biomarkers of the radiation-induced aging process. We have developed a mechanistic model of the individual response to radiation based on the nucleoshuttling of the ATM protein (RIANS). Recently, in the frame of the RIANS model, we have shown that, to respond to permanent endo- and exogenous stress, the ATM protein progressively agglutinates around the nucleus attracted by overexpressed perinuclear ATM-substrate protein. As a result, perinuclear ATM crowns appear to be an interesting biomarker of aging. The radiobiological characterization of the two human epithelial lens cell lines available and the four porcine epithelial lens cell lines that we have established showed delayed RIANS. The BFSP2 protein, found specifically overexpressed around the lens cell nucleus and interacting with ATM, may be a specific ATM-substrate protein facilitating the formation of perinuclear ATM crowns in lens cells. The perinuclear ATM crowns were observed inasmuch as the number of culture passages is high. Interestingly, 2 Gy X-rays lead to the transient disappearance of the perinuclear ATM crowns. Altogether, our findings suggest a strong influence of the ATM protein in radiation-induced cataractogenesis.

Keywords: ATM protein; cataractogenesis; ionizing radiation; lens.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging
  • Animals
  • Ataxia Telangiectasia Mutated Proteins
  • Cell Line
  • Cell Nucleus
  • Humans
  • Lens, Crystalline*
  • Swine

Substances

  • Ataxia Telangiectasia Mutated Proteins
  • ATM protein, human

Grants and funding

This work was supported by the Commissariat General à l’Investissement (Programmes Investissement d’avenir—INDIRA project) and the National Space Agency (CNES) (ATHENA project).