Preclinical Studies on the Safety and Toxicity of Photoditazine in the Antibacterial Photodynamic Therapy of Uropathogenic Bacteria

Biomedicines. 2023 Aug 17;11(8):2283. doi: 10.3390/biomedicines11082283.

Abstract

The 'dusting' technique of lithotripsy for the removal of infected urinary calculi and the wide use of drainage after endoscopic surgery may stimulate spreading of multidrug-resistant bacterial strains. Antibacterial photodynamic therapy (PDT) is one promising method for the elimination these strains. The purpose of our study was to evaluate alterations of renal pelvis morphology and renal function in laboratory animals after bactericidal regimens of PDT. Renal pelvises of pigs were filled with Photoditazine and then assessed either by examining the accumulation of Photoditazine in the urothelium or by illumination with a laser at a wavelength of 662 nm. A renal test and a complete blood count was performed to assess a negative effect of the treatment on health. Structural alterations of the kidney tissues were analyzed by histological examination. No photosensitizer fluorescence was detected in the urothelium of the pelvis. Histological study showed that PDT caused minor changes to the urothelium of the renal pelvis but did not affect the underlying connective tissue. No renal function abnormalities were found after PDT. Thus, the study indicates that antibacterial PDT is a safety technique that can complement common antibiotic therapy in the surgical treatment of urolithiasis.

Keywords: C-reactive protein; Photoditazine; antibacterial photodynamic therapy; creatinine; cystatin C; kidney; urea.