Engineered Biocatalytic Synthesis of β-N-Substituted-α-Amino Acids

Angew Chem Int Ed Engl. 2023 Oct 23;62(43):e202311189. doi: 10.1002/anie.202311189. Epub 2023 Sep 14.

Abstract

Non-canonical amino acids (ncAAs) are useful synthons for the development of new medicines, materials, and probes for bioactivity. Recently, enzyme engineering has been leveraged to produce a suite of highly active enzymes for the synthesis of β-substituted amino acids. However, there are few examples of biocatalytic N-substitution reactions to make α,β-diamino acids. In this study, we used directed evolution to engineer the β-subunit of tryptophan synthase, TrpB, for improved activity with diverse amine nucleophiles. Mechanistic analysis shows that high yields are hindered by product re-entry into the catalytic cycle and subsequent decomposition. Additional equivalents of l-serine can inhibit product reentry through kinetic competition, facilitating preparative scale synthesis. We show β-substitution with a dozen aryl amine nucleophiles, including demonstration on a gram scale. These transformations yield an underexplored class of amino acids that can serve as unique building blocks for chemical biology and medicinal chemistry.

Keywords: Biocatalysis; Directed Evolution; Multiplexed Screening; Non-Canonical Amino Acids; Pyridoxal Phosphate.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Amines
  • Amino Acids* / chemistry
  • Biocatalysis
  • Catalysis
  • Serine*

Substances

  • Amino Acids
  • Serine
  • Amines