Comparison of strategies for assessment of rate of torque development in older and younger adults

Eur J Appl Physiol. 2024 Feb;124(2):551-560. doi: 10.1007/s00421-023-05299-w. Epub 2023 Aug 25.

Abstract

There is increasing appreciation of the role of rate of torque development (RTD) in physical function of older adults (OAs). This study compared various RTD strategies and electromyography (EMG) in the knee extensors and focused on discriminating groups with potential limitations in voluntary activation (VA) and associations of different RTD indices with functional tests that may be affected by VA in OAs. Neuromuscular function was assessed in 20 younger adults (YAs, 22.0 ± 1.7 years) and 50 OAs (74.4 ± 7.0 years). Isometric ballistic and peak torque during maximal voluntary contractions (pkTMVC), doublet stimulation and surface EMG were assessed and used to calculate VA during pkTMVC and RTD and rate of EMG rise during ballistic contractions. Select mobility tests (e.g., gait speed, 5× chair rise) were also assessed in the OAs. Voluntary RTD and RTD normalized to pkTMVC, doublet torque, and peak doublet RTD were compared. Rate of EMG rise and voluntary RTD normalized to pkTMVC did not differ between OAs and YAs, nor were they associated with functional test scores. Voluntary RTD indices normalized to stimulated torque parameters were significantly associated with VA (r = 0.319-0.459), and both indices were significantly lower in OAs vs YAs (all p < 0.020). These RTD indices showed significant association with the majority of mobility tests, but there was no clear advantage among them. Thus, voluntary RTD normalized to pkTMVC was ill-suited for use in OAs, while results suggests that voluntary RTD normalized to stimulated torque parameters may be useful for identifying central mechanisms of RTD impairment in OAs.Clinical trial registration number NCT02505529; date of registration 07/22/2015.

Keywords: Aging; EMG; Muscle; Sarcopenia; Voluntary activation.

MeSH terms

  • Aged
  • Electromyography
  • Humans
  • Isometric Contraction* / physiology
  • Lower Extremity
  • Muscle, Skeletal* / physiology
  • Torque

Associated data

  • ClinicalTrials.gov/NCT02505529