Genome-Wide Analysis of TCP Transcription Factors and Their Expression Pattern Analysis of Rose Plants (Rosa chinensis)

Curr Issues Mol Biol. 2023 Jul 31;45(8):6352-6364. doi: 10.3390/cimb45080401.

Abstract

The plant-specific transcription factor TEOSINTE BRANCHED, CYCLOIDEA, AND PROLIFERATING CELL FACTOR (TCP) gene family plays vital roles in various biological processes, including growth and development, hormone signaling, and stress responses. However, there is a limited amount of information regarding the TCP gene family in roses (Rosa sp.). In this study, we identified 18 TCP genes in the rose genome, which were further classified into two subgroups (Group A and Group B) via phylogenetic analysis. Comprehensive characterization of these TCP genes was performed, including gene structure, motif composition, chromosomal location, and expression profiles. Synteny analysis revealed that a few TCP genes are involved in segmental duplication events, indicating that these genes played an important role in the expansion of the TCP gene family in roses. This suggests that segmental duplication events have caused the evolution of the TCP gene family and may have generated new functions. Our study provides an insight into the evolutionary and functional characteristics of the TCP gene family in roses and lays a foundation for the future exploration of the regulatory mechanisms of TCP genes in plant growth and development.

Keywords: TCP gene family; gene expression; phylogenetic analysis; rose; synteny.

Grants and funding

This research received no external funding.