Biomimetic Orthopedic Footwear Advanced Insole Materials to Be Used in Medical Casts for Weight-Bearing Monitoring

Biomimetics (Basel). 2023 Jul 29;8(4):334. doi: 10.3390/biomimetics8040334.

Abstract

Fabrication, characterization and testing of protective biomimetic orthopedic footwear advanced insole materials are introduced. The main objective of this material is to preserve and isolate a set of sensors for the Weight-Bearing Monitoring System (WBMS) device. Twenty-one samples of renewably sourced Polyurethane Foam (PUF) composed of poly(trimethylene ether) glycol (PO3G) and unmodified castor oil (CO) were synthesized and evaluated according to predetermined criteria. Response surface methodology of Box-Behnken design was applied to study the effect of the polyols ratio, isocyanate index (II), and blowing agent ratio on the properties (hardness, density) of PUFs. Results showed that CO/PO3G/Tolyene Diisocyanate (TDI) PUFs with hardness Shore A 17-22 and density of 0.19-0.25 g/cm3 demonstrate the required characteristics and can potentially be used as a durable and functional insole material. Phase separation studies have found the presence of well-segregated structures in PUFs having polyols ratio of CO:PO3G 1:3 and low II, which further explains their extraordinary elastic properties (400% elongation). Analysis of cushioning performance of PUF signified that five samples have Cushioning Energy (CE) higher than 70 N·mm and Cushioning Factor (CF) in the range of 4-8, hence are recommended for application in WBMS due to superior weight-bearing and pressure-distributing properties. Moreover, the developed formulation undergoes anaerobic soil bacterial degradation and can be categorized as a "green" bio-based material.

Keywords: biomimetic orthopedic footwear; green bio-based material; poly(trimethylene ether) glycol; polyurethane foam; system castor oil; weight-bearing monitoring.